Foundations of Machine Learning Al2000 and Al5000

FoML-09 Underfitting and Overfitting Regularized Least Squares

> <u>Dr. Konda Reddy Mopuri</u> Department of AI, IIT Hyderabad July-Nov 2025

So far in FoML

- What is ML and the learning paradigms
- Probability refresher
- MLE, MAP, and fully Bayesian treatment
- Linear Regression with basis functions geometric interpretation

Under and Over fitting

Linear Regression

- Complex functions can be fit to the data
 - Using the basis functions

Linear Regression with basis functions

- Complex functions can be fit to the data
 - Using the basis functions
- There are some choices (hyper parameters) to be made
 - What kind of basis functions?
 - How many of them?

Linear Regression with basis functions

- Complex functions can be fit to the data
 - Using the basis functions
- There are some choices (hyper parameters) to be made
 - What kind of basis functions?
 - o How many of them?
- They have consequences
 - over/under fitting

Polynomial basis functions

Target t = $\sin(2\pi x) + \sigma.\epsilon$

Noise $\epsilon \sim N(0, 1)$

$$y(x, \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + \ldots + w_M x^M = \sum_{j=0}^{M} w_j x^j$$

Data-driven Intelligence & Learning Lab

 Can the weight values provide some insight?

 Can the weight values provide some insight?

	M = 0	M = 1	M = 3	M = 9
w_0^{\star}	0.19	0.82	0.31	0.35
w_1^{\star}		-1.27	7.99	232.37
w_2^{\star}			-25.43	-5321.83
w_3^{\star}			17.37	48568.31
w_4^{\star}				-231639.30
w_5^{\star}				640042.26
w_6^{\star}				-1061800.52
w_7^{\star}				1042400.18
w_8^{\star}				-557682.99
w_9^\star				125201.43

Why didn't our M = 9 model realize a mapping similar to that of M = 3 model?

Better way to spot under/over fitting

• Plot the error (E_{RMS})

Effect of dataset size on overfitting

Effect of dataset size on overfitting

For a given model complexity, the overfitting problem becomes less severe as the dataset size increases

Data-driven Intelligence & Learning Lab

What if it is not easy to collect a lot of data?

- More data helps to avoid overfitting
- But, it may be challenging to collect a lot of data
- Then, what?

Regularization

- Large weight values indicate overfitting
- Higher complexity models lead to overfitting

	M = 0	M = 1	M = 3	M = 9
w_0^{\star}	0.19	0.82	0.31	0.35
w_1^{\star}		-1.27	7.99	232.37
w_2^{\star}			-25.43	-5321.83
w_3^{\star}			17.37	48568.31
w_4^{\star}				-231639.30
w_5^{\star}				640042.26
w_6^{\star}				-1061800.52
w_7^{\star}				1042400.18
w_8^{\star}				-557682.99
w_0^\star				125201.43

- In case of smaller datasets, instead of manually restricting the number of parameters
 - Add a penalty to avoid large weight values → 'weight decay' regularization

- In case of smaller datasets, instead of manually restricting the number of parameters
 - Add a penalty to avoid large weight values → 'weight decay' regularization

$$\tilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{i=1}^{N} \{ \mathbf{t_i} - \mathbf{w^T} \phi(\mathbf{x_i}) \}^2 +$$

- In case of smaller datasets, instead of manually restricting the number of parameters
 - Add a penalty to avoid large weight values

Ridge Regression

$$\tilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{i=1}^{N} \{\mathbf{t_i} - \mathbf{w^T} \phi(\mathbf{x_i})\}^2 + \frac{\lambda}{2} \sum_{i=1}^{M-1} \mathbf{w_i}^2$$

Bias term w_n may not be included in the regularization

$$\tilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{i=1}^{N} \{\mathbf{t_i} - \mathbf{w^T} \phi(\mathbf{x_i})\}^2 + \frac{\lambda}{2} \sum_{i=1}^{M-1} \mathbf{w_i}^2$$

Looks similar to what we saw during the MAP discussion

w/o regularization

More general form of the regularization

$$\tilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{i=1}^{N} \{ \mathbf{t_i} - \mathbf{w^T} \phi(\mathbf{x_i}) \}^2 + \frac{\lambda}{2} \sum_{i=1}^{M-1} |\mathbf{w_i}|^q$$

• When $q = 2 \rightarrow l_2$ norm penalty on the parameters

More general form of the regularization

$$\tilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{i=1}^{N} \{ \mathbf{t_i} - \mathbf{w^T} \phi(\mathbf{x_i}) \}^2 + \frac{\lambda}{2} \sum_{i=1}^{M-1} |\mathbf{w_i}|^q$$

- When $q = 2 \rightarrow l_2$ norm penalty on the parameters
- When $q = 1 \rightarrow l_1$ norm penalty (also, called Lasso)

Geometric interpretation

Equivalent to minimizing

$$\frac{1}{2} \sum_{i=1}^{N} \{t_i - \mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}_i)\}^2 \quad \text{ with } \qquad \sum_{j=1}^{M} |w_j|^q \leq \eta$$

Geometric interpretation

Equivalent to minimizing

$$\frac{1}{2}\sum_{i=1}^N\{t_i-\mathbf{w}^T\phi(\mathbf{x}_i)\}^2$$
 with $\sum_{j=1}^M|w_j|^q\leq \eta$

Plots of the 'unregularized' error and the 'regularization' term for q = 1 and 2

Geometric interpretation

Contours of regularization term for different values of q

Rough work

Next Model selection

