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So far in FoML

e What is ML and the learning paradigms
e Probability refresher
e MLE, MAP, and fully Bayesian treatment

e Linear Regression with basis functions - geometric interpretation
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Under and Over fitting
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Linear Regression

e Complex functions can be fit to the data

o Using the basis functions
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Linear Regression with basis functions

e Complex functions can be fit to the data
o Using the basis functions
e There are some choices (hyper parameters) to be made

o What kind of basis functions?

o How many of them?
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Linear Regression with basis functions

e Complex functions can be fit to the data
o Using the basis functions
e There are some choices (hyper parameters) to be made

o What kind of basis functions?

o How many of them?
e They have consequences

o over/under fitting
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Polynomial basis functions
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How to spot Under/Over fitting?

@ )°

|| @580h 0385 dapd %0y FrETERd I. i ]_,
TR senfiast <ver tevmEe Data-driven Intelligence

! ' Indian Institute of Technology Hyderabad & Learning Lab




How to spot Under/Over fitting?

e Can the weight values provide

some insight?
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How to spot Under/Over fitting?

e Can the weight values provide M=0 M=1 M=3 M=9
o wE 0.9 082 03I 0.35
some insight? w? 127 7.99 232.37
w} -25.43 -5321.83
wk 17.37 48568.31
w -231639.30
w 640042.26
w -1061800.52
wk 1042400.18
w -557682.99
w 125201.43
(o]
2r68ad 0388 dend H0P resoerk Dl L

Ill YR genfire W devmEe Data-driven Intelligence

Indian Institute of Technology Hyderabad & Learning Lab




Why didn't our M =9 model realize o
mapping similar to that of M = 3 model?
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Better way to spot under/over fitting

e Plotthe error (Eg,,q) 1
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Effect of dataset size on overfitting

: — ; :
M =9 model fitting to dataset of different sizes
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Effect of dataset size on overfitting

M =9 model fitting to dataset of different sizes

For a given model complexity, the overfitting problem becomes less
severe as the dataset size increases
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What if it is not easy to collect a lot of data?

e More data helps to avoid overfitting
e But, it may be challenging to collect a lot of data
e T[hen, what?
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Regularization
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How to spot Under/Over fitting?

e Large weight values indicate M=0 M=1 M=3 M=9
: wy | 019 082 031 0.35
overfitting ot 127 799 232.37
: : w} -25.43 -5321.83
e Higher complexity models lead ws P 48568 31
to overfittin Wy Lol
9 wk 640042.26
w -1061800.52
wk 1042400.18
wk -557682.99
w} 125201.43
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Regularized least squares

e |n case of smaller datasets, instead of manually restricting the

number of parameters

o Add a penalty to avoid large weight values — ‘weight decay’ regularization
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Regularized least squares

e |n case of smaller datasets, instead of manually restricting the

number of parameters

o Add a penalty to avoid large weight values — ‘weight decay’ regularization
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Regularized least squares

e |n case of smaller datasets, instead of manually restricting the

number of parameters

o Add a penalty to avoid large weight values Ridge
Regression
1 N A M-1
— — T . 2 —_— 2
(W)= LAt = w6l +5 3w
i= 1=

Bias term w, may not be included in the regularization
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Regularized least squares

N

Blw) = 2 3 {ts — w6} + 5 Zwl

i=1

e |Looks similar to what we saw during the MAP discussion
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Regularized Least Squares
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Regularized Least Squares
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More general form of the regularization

Z{t —w' P(xi) }2 Z |W1|q

e When q=2- L, norm penalty on the parameters
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More general form of the regularization

Z{t —wip(x;)}? + Z w4

e When q=2- L, norm penalty on the parameters

e When g=1-l norm penalty (also, called Lasso)
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Geometric interpretation

Equivalent to minimizing

M
N
1
SS (- wTetk) with Y Jwil? <7
=1 j=1
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Geometric interpretation

wa A wo

Equivalent to minimizing < @ < @

M
1 N
s>t —wretx)l with Y fwi|? <7 /
i=1 j=1

NIV

Plots of the ‘unregularized’ error and the ‘regularization’ term for q =1 and 2
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Geometric interpretation

Contours of regularization term for different values of g
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Rough work
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Next
Model selection
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